Varying Exhaust Stack Discharge Velocity to Improve Energy Efficiency

Gregory R. Johnson, P.E.

Newcomb & Boyd

Consultants and Engineers

Newcomb & Boyd

Benefits of Varying Stack Discharge Velocity

- Reduction in energy usage
- Reduction in both interior and exterior radiated noise
- Improve system reliability and control stability

Current Industry Standards

ANSI/AIHA Z9.5-1992, Section 2.4

- Vertical discharge 10' above adjacent roof lines
- Discharge velocity of 3000 fpm

Current Industry Standards (continued)

ASHRAE Applications

Handbook – 2003, Chapter 14

- Separation between intake and exhaust
- Stack Height
- Stack Height plus momentum

Newcomb & Boyd

Current Industry Standards (continued)

- CFD or wind tunnel modeling recommended
- Increase effective stack height by increasing effluent momentum
- Acceptable dilution is 3 ppm

Factors Affecting Airflow Around Buildings

Fig. 3 Flow Recirculation Regions and Exhaust-to-Intake Stretched-String Distances (Wilson 1982)

Case Study Government Laboratory Facility

Site Plan

Laboratory Exhaust System

Laboratory Exhaust System (continued)

System Sizing

System sized to meet peak load

- •16' tall glass at lab perimeter
- 15 Watts/sf equipment load
- N+1 redundancy

System Capacity

	Room Airflow (CFM)	Fan Airflow (CFM)	System HP
Maximum	170,000	240,000	500
Minimum	103,200	240,000	500

Newcomb & Boyd

Design Problems

- System is inefficient
- Control issues
- Bypass Air
- Night setback mode
- Fan failure

Design Solutions

Variable Speed Exhaust System

- Significant energy savings
- Simplifies bypass air and night setback control
- Increased reliability with continuous fan operation

Revised System Capacity

	Room Airflow (CFM)	Fan Airflow (CFM)	System HP
Maximum	170,000	240,000	500
Minimum	103,200	240,000	500
Maximum	170,000	170,000	177
Minimum	103,200	120,000	63

Exhaust Recirculation Issues

Consultants and Engineers Wind Tunnel Newcomb & Boyd

Consultants and Engineers Wind Tunnel Newcomb & Boyd

Consultants and Engineers DOE II Results To be added Newcomb & Boyd

Conclusions

- Varying exhaust discharge velocity may be possible depending on system type
- Significant benefits can be realized with respect to energy use, reliability, and system control
- Not appropriate for all systems and should be carefully analyzed and tested

Acknowledgements

Confidential Government Building

Architect

Perkins & Will, Atlanta, GA

Green Building Consultant

The Folsom Group, Charlottesville, Virginia

Newcomb & Boyd

Acknowledgements

Energy Analyst

Building Performance Engineers, Tucker, GA

Wind Testing

Cermak Peterka Petersen, Inc.

Fort Collins, CO

Appendices

Appendix A ANSI/AIHA Z9.5-1992

Appendix B ASHRAE Fundamentals

2001, Chapter 14, Airflow

Around Buildings

Appendix C Entire Wind Tunnel Testing

Video

Appendix D Case Study for inappropriate

use